12,578 research outputs found

    When Does Paternalistic Control Positively Relate to Job Satisfaction and Citizenship Behavior in Taiwan?:The Role of Follower Expectation

    Get PDF
    Although prior research predicts mainly that followers expect leaders to exert less paternalistic control (such as emphasis on discipline, didactic instruction, and belittling followers), we argue that such an expectation may not be stable overtime or across settings. Based on the connectionist perspectives of implicit leadership theories, we propose a follower expectation model of paternalistic control, in which followers compare their perceived with expected levels of paternalistic control. Two inconsistent conditions—insufficient and excessive control—are identified, and the consistency between perceived and expected paternalistic control is predicted to relate to favorable follower outcomes. We examine this model by conducting two daily experience sampling studies in Taiwan. Our findings indicate that insufficient control is as unfavorable as excessive control in lowering followers’ job satisfaction and citizenship behavior, and this pattern is particularly salient in terms of emphasis on discipline and the belittling of followers. A supplemental, qualitative analysis additionally demonstrated the conditions under which the expectation–perception consistency regarding belittling followers relates to favorable follower responses. (PsycInfo Database Record (c) 2023 APA, all rights reserved

    Reliability Evaluation for Clustered WSNs under Malware Propagation.

    Full text link
    We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    Ultra-strong Adhesion of Graphene Membranes

    Full text link
    As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Young's modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.Comment: to appear in Nature Nanotechnolog

    Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks

    Get PDF
    The idea of 'date' and 'party' hubs has been influential in the study of protein-protein interaction networks. Date hubs display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. Here we show that the reported importance of date hubs to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function. The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not in general correlate with co-expression. Thus, we suggest that a date/party dichotomy is not meaningful and it might be more useful to conceive of roles for protein-protein interactions rather than individual proteins. We find significant correlations between interaction centrality and the functional similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure

    Complex sequencing rules of birdsong can be explained by simple hidden Markov processes

    Get PDF
    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical propertiesof the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable sequences, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. This property is shared with other complex sequential behaviors. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model (GMM)), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex sequences with higher-order dependencies

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes

    Get PDF
    The Kondo-effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons and at low temperature this leads to a zero-bias conductance anomaly. This has become a common signature in bias-spectroscopy of single-electron transistors, observed in GaAs quantum dots as well as in various single-molecule transistors. While the zero-bias Kondo effect is well established it remains uncertain to what extent Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence. Here we report on a pronounced conductance peak observed at finite bias-voltage in a carbon nanotube quantum dot in the spin singlet ground state. We explain this finite-bias conductance anomaly by a nonequilibrium Kondo-effect involving excitations into a spin triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this nonequilibrium resonance.Comment: 21 pages, 5 figure
    corecore